Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.12.468374

ABSTRACT

Current licensed COVID-19 vaccines are based on antigen sequences of initial SARS-CoV-2 isolates that emerged in 2019. By mid 2021 these historical virus strains have been completely replaced by new cosmopolitan SARS-CoV-2 lineages. The ongoing pandemic has been further driven by emerging variants of concern (VOC) Alpha, Beta, Gamma and, lately predominant, Delta. These are characterized by an increased transmissibility and possible escape from naturally acquired or vaccine-induced immunity. We here show, using a YF17D-vectored first-generation COVID-19 vaccine (Sanchez-Felipe et al., 2021) and a stringent hamster challenge model (Abdelnabi et al., 2021) that the immunity elicited by a prototypic spike antigen is insufficient to provide optimal protection against the Beta VoC, urging for an antigenic update. We therefore designed an updated second-generation vaccine candidate that carries the sequence of a spike antigen that includes crucial epitopes from multiple VOCs. This vaccine candidate yielded a marked change in target antigen spectrum covered as demonstrated by (i) antigenic cartography and (ii) full protection against infection and virus-induced disease caused by any of the four VOCs (Alpha, Beta, Gamma and Delta) used for challenge. This more universal COVID-19 vaccine candidate also efficiently blocked direct transmission of VOC Delta from vaccinated infected hamsters to non-vaccinated sentinels under prolonged co-housing conditions. In conclusion, our data suggest that current first-generation COVID-19 vaccines need to be adapted to cover emerging sequence diversity of VOC to preserve vaccine efficacy and to contain virus spread at the community level.


Subject(s)
COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.26.433062

ABSTRACT

Within one year after its emergence, more than 108 million people contracted SARS-CoV-2 and almost 2.4 million succumbed to COVID-19. New SARS-CoV-2 variants of concern (VoC) are emerging all over the world, with the threat of being more readily transmitted, being more virulent, or escaping naturally acquired and vaccine-induced immunity. At least three major prototypic VoC have been identified, i.e. the UK (B.1.1.7), South African (B.1.351) and Brazilian (B.1.1.28.1), variants. These are replacing formerly dominant strains and sparking new COVID-19 epidemics and new spikes in excess mortality. We studied the effect of infection with prototypic VoC from both B.1.1.7 and B.1.351 lineages in Syrian golden hamsters to assess their relative infectivity and pathogenicity in direct comparison to two basal SARS-CoV-2 strains isolated in early 2020. A very efficient infection of the lower respiratory tract of hamsters by these VoC is observed. In line with clinical evidence from patients infected with these VoC, no major differences in disease outcome were observed as compared to the original strains as was quantified by (i) histological scoring, (ii) micro-computed tomography, and (iii) analysis of the expression profiles of selected antiviral and pro-inflammatory cytokine genes. Noteworthy however, in hamsters infected with VoC B.1.1.7, a particularly strong elevation of proinflammatory cytokines was detected. Overall, we established relevant preclinical infection models that will be pivotal to assess the efficacy of current and future vaccine(s) (candidates) as well as therapeutics (small molecules and antibodies) against two important SARS-CoV-2 VoC.


Subject(s)
COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.08.193045

ABSTRACT

The explosively expanding COVID-19 pandemic urges the development of safe, efficacious and fast-acting vaccines to quench the unrestrained spread of SARS-CoV-2. Several promising vaccine platforms, developed in recent years, are leveraged for a rapid emergency response to COVID-191. We employed the live-attenuated yellow fever 17D (YF17D) vaccine as a vector to express the prefusion form of the SARS-CoV-2 Spike antigen. In mice, the vaccine candidate, tentatively named YF-S0, induces high levels of SARS-CoV-2 neutralizing antibodies and a favorable Th1 cell-mediated immune response. In a stringent hamster SARS-CoV-2 challenge model2, vaccine candidate YF-S0 prevents infection with SARS-CoV-2. Moreover, a single dose confers protection from lung disease in most vaccinated animals even within 10 days. These results warrant further development of YF-S0 as a potent SARS-CoV-2 vaccine candidate.


Subject(s)
COVID-19 , Yellow Fever , Lung Diseases
SELECTION OF CITATIONS
SEARCH DETAIL